Search results

Search for "nickel catalysis" in Full Text gives 14 result(s) in Beilstein Journal of Organic Chemistry.

Carbonylative synthesis and functionalization of indoles

  • Alex De Salvo,
  • Raffaella Mancuso and
  • Xiao-Feng Wu

Beilstein J. Org. Chem. 2024, 20, 973–1000, doi:10.3762/bjoc.20.87

Graphical Abstract
  • time, Wu and co-workers contributed to the introduction of two new syntheses of N-aroylindole derivatives by means of nickel catalysis. In 2021, they reported a nickel-catalyzed carbonylative cyclization of 2-nitroalkynes and aryl iodides with Co2(CO)8 as the CO source. The reaction was performed in
PDF
Album
Review
Published 30 Apr 2024

Visible-light-induced nickel-catalyzed α-hydroxytrifluoroethylation of alkyl carboxylic acids: Access to trifluoromethyl alkyl acyloins

  • Feng Chen,
  • Xiu-Hua Xu,
  • Zeng-Hao Chen,
  • Yue Chen and
  • Feng-Ling Qing

Beilstein J. Org. Chem. 2023, 19, 1372–1378, doi:10.3762/bjoc.19.98

Graphical Abstract
  • trifluoromethyl alkyl acyloins in good yields with broad substrate compatibility. The complex bioactive molecules were also compatible with this catalytic system to afford the corresponding products. Keywords: alkyl carboxylic acids; cross coupling; EDA complex; nickel catalysis; trifluoromethyl acyloins
PDF
Album
Supp Info
Full Research Paper
Published 11 Sep 2023

Photoredox catalysis in nickel-catalyzed C–H functionalization

  • Lusina Mantry,
  • Rajaram Maayuri,
  • Vikash Kumar and
  • Parthasarathy Gandeepan

Beilstein J. Org. Chem. 2021, 17, 2209–2259, doi:10.3762/bjoc.17.143

Graphical Abstract
  • ‒C) and carbon–heteroatom bonds for the construction of complex organic molecules by nickel catalysis significantly improved the atom-, step-, and resource economy by avoiding the substrate prefunctionalizations (Scheme 1) [26][27][28][29][30]. The nickel-catalyzed oxidative C‒H functionalization
  • , MacMillan and co-workers demonstrated an inspiring C(sp3)‒H arylation of dimethylaniline (1a) with a variety of aryl halides using the photoredox nickel catalysis [53]. Here, the combination of the iridium photocatalyst Ir[dF(CF3)ppy]2(dtbbpy)PF6 and the commercially available nickel catalyst NiCl2·glyme
  • transfer (HAT) and nickel catalysis [54]. The catalytic system consisting of iridium photocatalyst Ir[dF(CF3)ppy]2(dtbbpy)PF6, nickel catalyst NiBr2·3H2O, ligand 4,7-dimethoxy-1,10-phenanthroline (4,7-dOMe-phen), and 3-acetoxyquinuclidine was found to be optimal to afford the desired α-amino C–C coupled
PDF
Album
Review
Published 31 Aug 2021

On the application of 3d metals for C–H activation toward bioactive compounds: The key step for the synthesis of silver bullets

  • Renato L. Carvalho,
  • Amanda S. de Miranda,
  • Mateus P. Nunes,
  • Roberto S. Gomes,
  • Guilherme A. M. Jardim and
  • Eufrânio N. da Silva Júnior

Beilstein J. Org. Chem. 2021, 17, 1849–1938, doi:10.3762/bjoc.17.126

Graphical Abstract
PDF
Album
Review
Published 30 Jul 2021

Methodologies for the synthesis of quaternary carbon centers via hydroalkylation of unactivated olefins: twenty years of advances

  • Thiago S. Silva and
  • Fernando Coelho

Beilstein J. Org. Chem. 2021, 17, 1565–1590, doi:10.3762/bjoc.17.112

Graphical Abstract
  • C, which undergoes an oxidation process to generate carbocation D. A proton abstraction from D then affords the observed product. Cross-coupling reaction between unactivated olefins and alkyl halides under nickel catalysis The use of alkyl halides in transition-metal-catalyzed cross-couplings to
  • ]. Nickel catalysis is a viable alternative for this kind of cross-coupling reactions due to its particular radical mechanism, instead of the common metal-oxidative addition to organohalides [102][103][104]. Examples of the coupling between primary, secondary, and even tertiary alkyl halides with
  • olefins 84 as nucleophile partners and racemic secondary and tertiary α-bromo-N-protected β-lactams 83 under nickel catalysis, along with the chiral bis(oxazoline) ligand 85 and triethoxysilane (Scheme 32) [108]. Substrate structural variations on 84 had only a small impact on the reaction
PDF
Album
Review
Published 07 Jul 2021

Recent developments in enantioselective photocatalysis

  • Callum Prentice,
  • James Morrisson,
  • Andrew D. Smith and
  • Eli Zysman-Colman

Beilstein J. Org. Chem. 2020, 16, 2363–2441, doi:10.3762/bjoc.16.197

Graphical Abstract
PDF
Album
Review
Published 29 Sep 2020

When metal-catalyzed C–H functionalization meets visible-light photocatalysis

  • Lucas Guillemard and
  • Joanna Wencel-Delord

Beilstein J. Org. Chem. 2020, 16, 1754–1804, doi:10.3762/bjoc.16.147

Graphical Abstract
  • electrocatalysis, have been achieved recently [53][54][55][56][57][58]. In addition, various transformations merging photoredox catalysis with transition-metal catalysis have been disclosed [59][60][61][62][63][64][65]. Among these different strategies, visible-light photoredox catalysis combined with nickel
  • catalysis is undoubtedly the most thoroughly investigated approach and consequently, the most widely described in the literature [66][67]. The interest of the scientific community towards this dual catalysis and further developments were pioneered by MacMillan [68] and Molander [69]. The general mechanism
PDF
Album
Review
Published 21 Jul 2020

Photocatalytic deaminative benzylation and alkylation of tetrahydroisoquinolines with N-alkylpyrydinium salts

  • David Schönbauer,
  • Carlo Sambiagio,
  • Timothy Noël and
  • Michael Schnürch

Beilstein J. Org. Chem. 2020, 16, 809–817, doi:10.3762/bjoc.16.74

Graphical Abstract
  • , electrophilic alkyl radicals were used in several transformations, such as electrophilic cross couplings under nickel catalysis, either with boronic acids [35] or different (aryl)halides [36][37][38]. Furthermore, visible light-promoted uncatalyzed electron transfer via the formation of electron donor–acceptor
PDF
Album
Supp Info
Full Research Paper
Published 21 Apr 2020

Recent advances on the transition-metal-catalyzed synthesis of imidazopyridines: an updated coverage

  • Gagandeep Kour Reen,
  • Ashok Kumar and
  • Pratibha Sharma

Beilstein J. Org. Chem. 2019, 15, 1612–1704, doi:10.3762/bjoc.15.165

Graphical Abstract
  • alcohols and asymmetric sulfide oxidation [91]. Diverse reactivity, cost efficiency and variable oxidation state [Ni(0)–Ni(IV)] associated with nickel led to remarkable developments in the field of catalytic applications [68]. Nickel catalysis involved cycloaddition, cyclization, C–H bond functionalization
PDF
Album
Review
Published 19 Jul 2019

Continuous-flow retro-Diels–Alder reaction: an efficient method for the preparation of pyrimidinone derivatives

  • Imane Nekkaa,
  • Márta Palkó,
  • István M. Mándity and
  • Ferenc Fülöp

Beilstein J. Org. Chem. 2018, 14, 318–324, doi:10.3762/bjoc.14.20

Graphical Abstract
  • the literature, a similar desulfurisation batch reaction was performed with nickel catalysis, in ethanol (EtOH)/water (2:1) solution [55][56][57]. Thus, thioxo derivative 8b was dissolved in this mixture, and the CF method was repeated. Desulfurisation of 8b, at 250 °C without adding any catalytic
PDF
Album
Supp Info
Full Research Paper
Published 01 Feb 2018

Half-sandwich nickel(II) complexes bearing 1,3-di(cycloalkyl)imidazol-2-ylidene ligands

  • Johnathon Yau,
  • Kaarel E. Hunt,
  • Laura McDougall,
  • Alan R. Kennedy and
  • David J. Nelson

Beilstein J. Org. Chem. 2015, 11, 2171–2178, doi:10.3762/bjoc.11.235

Graphical Abstract
  • -coupling; N-heterocyclic carbenes; nickel; Introduction Nickel catalysis is currently an area of great interest, due to the potential for nickel to replace palladium in some catalytic processes, as well as its ability to perform a much wider range of reactions [1]. Nickel complexes bearing N-heterocyclic
PDF
Album
Supp Info
Full Research Paper
Published 12 Nov 2015

Recent advances in transition metal-catalyzed Csp2-monofluoro-, difluoro-, perfluoromethylation and trifluoromethylthiolation

  • Grégory Landelle,
  • Armen Panossian,
  • Sergiy Pazenok,
  • Jean-Pierre Vors and
  • Frédéric R. Leroux

Beilstein J. Org. Chem. 2013, 9, 2476–2536, doi:10.3762/bjoc.9.287

Graphical Abstract
PDF
Album
Review
Published 15 Nov 2013

Intramolecular carbonickelation of alkenes

  • Rudy Lhermet,
  • Muriel Durandetti and
  • Jacques Maddaluno

Beilstein J. Org. Chem. 2013, 9, 710–716, doi:10.3762/bjoc.9.81

Graphical Abstract
  • skeleton was achieved by using NiBr2bipy catalysis. Keywords: alkenes; carbometallation; carbonickelation; cyclization; Heck-type reaction; nickel catalysis; Introduction Carbometalation is a reaction involving the addition of an organometallic species to a nonactivated alkene or alkyne to form a new
  • method are the use of an easily prepared Ni(II)bipy complex in combination with manganese dust as a reducing agent, which is not air sensitive, is compatible with fragile functions, and can be used in a catalytic amount. We showed that this nickel catalysis applies to cross-coupling reactions
PDF
Album
Supp Info
Full Research Paper
Published 12 Apr 2013

Palladium- and copper-mediated N-aryl bond formation reactions for the synthesis of biological active compounds

  • Carolin Fischer and
  • Burkhard Koenig

Beilstein J. Org. Chem. 2011, 7, 59–74, doi:10.3762/bjoc.7.10

Graphical Abstract
  • )TMEDA]2Cl2, omitting the base and working at room temperature [13][14]. Besides palladium and copper, nickel catalysis also allows the arylation of primary and secondary amines [15][16]. However, the three methods (Ullmann–Goldberg, Buchwald–Hartwig and Chan–Lam) have become standard procedures for N
PDF
Album
Review
Published 14 Jan 2011
Other Beilstein-Institut Open Science Activities